Q1.

Which statement about pH is correct?

- A The pH of a weak base is independent of temperature.
- **B** At temperatures above 298 K, the pH of pure water is less than 7.
- **C** The pH of 2.0 mol dm⁻³ nitric acid is approximately 0.30
- **D** The pH of 0.10 mol dm⁻³ sulfuric acid is greater than that of 0.10 mol dm⁻³ hydrochloric acid.

(Total	1 mark)
--------	---------

0

 $^{\circ}$

 $^{\circ}$

 $^{\circ}$

Q2.

A 0.10 mol dm⁻³ aqueous solution of an acid is added slowly to 25 cm³ of a 0.10 mol dm⁻³ aqueous solution of a base.

Which acid-base pair has the highest pH at the equivalence point?

Α	CH ₃ COOH and NaOH	$^{\circ}$
В	CH ₃ COOH and NH ₃	$^{\circ}$
С	HCI and NaOH	$^{\circ}$
D	HCI and NH ₃	0

(Total 1 mark)

Q3.

Which is the concentration of NaOH(aq), in mol dm⁻³, that has pH = 14.30?

 $K_{\rm w} = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6} \text{ at } 25 \text{ °C}$

- A −1.16
 B 5.01 × 10⁻¹⁵
- **C** 2.00×10^{14}
- **D** 2.00

(Total 1 mark)

 $^{\circ}$

Q4.

Which indicator should be used in a titration to find the concentration of a solution of methylamine using 0.010 mol dm^{-3} hydrochloric acid?

(Total 1 mark)

Q5.

2,4,6-Trichlorophenol is a weak monoprotic acid, with $K_a = 2.51 \times 10^{-8} \text{ mol dm}^{-3}$ at 298 K.

What is the concentration, in mol dm⁻³, of hydrogen ions in a 2.00 × 10⁻³ mol dm⁻³ solution of 2,4,6-trichlorophenol at 298 K?

Α	5.02 × 10 ⁻¹¹	0
в	7.09 × 10 ⁻⁶	0
с	1.26 × 10⁻⁵	0
D	3.54 × 10⁻₃	0

(Total 1 mark)

Q6.

What is the pH of a 0.46 mol dm⁻³ solution of potassium hydroxide at 298 K?

 $(K_{\rm W} = 1.0 \times 10^{-14} \, {\rm mol}^2 \, {\rm dm}^{-6} \, {\rm at} \, 298 \, {\rm K})$

(Total 1 mark)

Q7.

The diagram shows a pH curve produced by adding a strong alkali to a weak acid.

Which point on the curve represents a solution that can act as a buffer?

(Total 1 mark)

Q8.

The rate equation for the acid-catalysed reaction between iodine and propanone is:

rate =
$$k$$
 [H⁺] [C₃H₆O]

The rate of reaction was measured for a mixture of iodine, propanone and sulfuric acid at pH = 0.70

In a second mixture the concentration of the sulfuric acid was different but the concentrations of iodine and propanone were unchanged. The new rate of reaction was a quarter of the original rate.

What was the pH of the second mixture?

(Total 1 mark)

Q9.

The table shows the pKa values for two acids.

Name of acid	рKа
Propanoic acid	4.87
Butanoic acid	4.82

Which statement is correct?

Q10.

What is the pH of a 0.020 mol dm $^{-3}$ solution of a diprotic acid which is completely dissociated?

(Total 1 mark)

Q11.

The acid dissociation constant, K_a , of a weak acid HA has the value 2.56 x 10⁻⁴ mol dm⁻³.

What is the pH of a 4.25×10^{-3} mol dm⁻³ solution of HA?

(Total 1 mark)